

# Pearson Edexcel Level 3

# **GCE Mathematics**

# Advanced

**Paper 1: Pure Mathematics** 

PMT Mock 1

Paper Reference(s)

Time: 2 hours

9MA0/01

You must have:

Mathematical Formulae and Statistical Tables, calculator

# Candidates may use any calculator permitted by Pearson regulations. Calculators must not have the facility for algebraic manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

### Instructions

- Use black ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- Answer **all** questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided *there may be more space than you need*.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- Inexact answers should be given to three significant figures unless otherwise stated.

## Information

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- There are 16 questions in this paper. The total mark is 100.
- The marks for each question are shown in brackets *use this as a guide as to how much time to spend on each question.*

## Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.
- If you change your mind about an answer, cross it out and put your new answer and any working underneath.

DOG PMTEducation

🕟 www.pmt.education





1. a. Find the first four terms, in ascending powers of x, of the binomial expansion of

$$(\frac{1}{9}-2x)^{\frac{1}{2}}$$

giving each coefficient in its simplest form.

(4)

(2)

b. Explain how you could use  $x = \frac{1}{36}$  in the expansion to find an approximation for  $\sqrt{2}$ .

There is no need to carry out the calculation.

a.

$$\left(\frac{1}{9} - 2x\right)^{\frac{1}{2}} = \frac{1}{9}^{\frac{1}{2}} \left(1 - \frac{2}{1 \div 9}x\right)^{\frac{1}{2}}$$
$$= \frac{1}{3} (1 - 18x)^{\frac{1}{2}}$$

Using the binomial expansion formula:

$$= \frac{1}{3} \left( 1 + \frac{(-18x)}{2} + \frac{\frac{1}{2}(-\frac{1}{2})}{2} (-18x)^2 + \frac{\frac{1}{2}(-\frac{1}{2})(-\frac{3}{2})}{3!} (-18x)^3 + \cdots \right)$$
$$= \frac{1}{3} \left( 1 - 9x - \frac{81}{2}x^2 - \frac{729}{2}x^3 + \cdots \right)$$
$$= \frac{1}{3} - 3x - \frac{27}{2}x^2 - \frac{243}{2}x^3 + \cdots$$

B1 For taking out a factor of  $(\frac{1}{9})^{\frac{1}{2}}$ 

M1 For the form of the binomial expansion with  $n = \frac{1}{2}$  and a term of (kx)

A1 Three of the four terms are correct

A1 cso All terms are correct.  $\frac{1}{3} - 3x - \frac{27}{2}x^2 - \frac{243}{2}x^3 + \dots$ b.

If  $x = \frac{1}{36}$ ,  $\left(\frac{1}{9} - 2x\right)^{\frac{1}{2}} = \frac{\sqrt{2}}{6}$ . So  $\sqrt{2}$  can be approximated by substituting  $x = \frac{1}{36}$  into the expansion and multiplying by 6

M1 Score for substituting  $x = \frac{1}{36}$  into  $(\frac{1}{9} - 2x)^{\frac{1}{2}}$  to obtain  $\frac{\sqrt{2}}{6}$  or such as  $\sqrt{\frac{2}{36}}$ 

A1 Explains that  $x = \frac{1}{36}$  is substituted into both sides and you multiply the result by 6.

#### (Total for Question 1 is 6 marks)

💟 PMTEducation





**2.** The curves  $C_1$  and  $C_2$  have equations

$$C_1: y = 2^{3x+2}$$
  
 $C_2: y = 4^{-x}$ 

Show that the *x*-coordinate of the point where  $C_1$  and  $C_2$  intersect is  $\frac{-2}{5}$ .

$$4^{-x} = 2^{3x+2} \Rightarrow 2^{-2x} = 2^{3x+2}$$
  
$$-2x = 3x + 2 \Rightarrow x = \frac{-2}{5}$$
  
(3)

M1 Writes  $4^{-x}$  as a power of 2 or equivalent eg.  $4^{-x} = 2^{-2x}$ 

Alternatively writes  $2^{-2x}$  as a power of 4 eg.  $2^{3x+2} = \left(4^{\frac{1}{2}}\right)^{(3x+2)}$ dM1 Equates the indices and attempts to find  $x = \dots$ 

A1 Cso  $x = \frac{-2}{5}$ 

(Total for Question 2 is 3 marks)

▶ Image: Second Second





- **3**. Relative to a fixed origin,
  - point *A* has position vector  $-2\mathbf{i} + 4\mathbf{j} + 7\mathbf{k}$
  - point *B* has position vector  $-\mathbf{i} + 3\mathbf{j} + 8\mathbf{k}$
  - point *C* has position vector  $\mathbf{i} + \mathbf{j} + 4\mathbf{k}$
  - point *D* has position vector  $-\mathbf{i} + 3\mathbf{j} + 2\mathbf{k}$
  - a. Show that  $\overrightarrow{AB}$  and  $\overrightarrow{CD}$  are parallel and the ratio  $\overrightarrow{AB}$ :  $\overrightarrow{CD}$  in its simplest form.

 $\overrightarrow{AB} = -\overrightarrow{OA} + \overrightarrow{OB} = 2i - 4j - 7k - i + 3j + 8k$ = i - j + k $\overrightarrow{CD} = -\overrightarrow{OC} + \overrightarrow{OD} = -i - j - 4k - i + 3j + 2k$ = -2i + 2j - 2k $\overrightarrow{AB} \text{ and } \overrightarrow{CD} \text{ are parallel as } \overrightarrow{CD} = -2\overrightarrow{AB}, \text{ and } \overrightarrow{AB}: \overrightarrow{CD} = 1:2$ 

- M1 Attempts to subtract either way round of either  $\overrightarrow{AB}$  or  $\overrightarrow{CD}$
- A1 Correctly obtains either  $\overrightarrow{AB}$  or  $\overrightarrow{CD}$
- A1 Correctly obtains both  $\overrightarrow{AB}$  and  $\overrightarrow{CD}$
- **B1** States the ratio of  $\overrightarrow{AB}$  :  $\overrightarrow{CD}$  = 1 : 2

(4)

b. Hence describe the quadrilateral *ABCD*.

A quadrilateral with one set of parallel sides is a trapezium

(1)

B1 describes that the quadrilateral ABCD is a trapezium

(Total for Question 3 is 5 marks)

PMTEducation





**4.** Ben starts a new company.

- In year 1 his profits will be £24000.
- In year 11 his profit is predicted to be £64000.

Model *P* assumes that his profit will increase by the same amount each year.

a. According to model **P**, determine Ben's profit in year 5.

Ben's profits can be modelled by an arithmetic progression, therefore has  $n^{th}$  term a + (n-1)d.  $a = 24000, d = \frac{64000 - 24000}{10} = 4000$ 

 $5^{th}term: 24000 + (5-1)4000 = 40000$ 

- M1 Using the  $n^{\text{th}}$  term = a + (n 1)d of an A.P. and attempts to find value of d
- M1 Uses a + 4d with a = 24000 and  $d = \cdots (4000)$  to find the profit in Year 5
- A1 £40000

(3)

Model Q assumes that his profit will increase by the same percentage each year.

b. According to model Q, determine Ben's profit in year 5. Give your answer to the nearest £10.

In this case, Ben's profits can be modelled with a geometric progression, with  $n^{th}$  term  $ar^{n-1}$ .

$$a = 24000 \Rightarrow 24000r^{10} = 64000 \Rightarrow r = \sqrt[10]{\frac{64000}{24000}} = \left(\frac{64}{24}\right)^{\frac{1}{10}}$$

In year 5, profit=  $24000 \left( \left( \frac{64}{24} \right)^{\frac{1}{10}} \right)^4 = \pounds 35530.29$ 

= £35530 to the nearest £10.

(3)

M1 Using the  $n^{\text{th}}$  term =  $ar^{n-1}$  of a G.P. and attempts to find r

M1 Uses 
$$ar^4$$
 with  $a = 24000$  and  $r = \left(\frac{64}{24}\right)^{\frac{1}{10}}$  to find the profit in year 5

A1 £35530

(Total for Question 4 is 6 marks)

Of States PMTEducation

F





5. The function f is defined by

f: 
$$x \rightarrow \frac{2x-3}{x-1}$$
  $x \in R, x \neq 1$ 

a. Find  $f^{-1}(3)$ .

$$y = \frac{2x - 3}{x - 1}$$

$$x = \frac{2y-3}{y-1} \Rightarrow x(y-1) = 2y-3 \Rightarrow xy-x = 2y-3 \Rightarrow xy-2y = x-3$$
$$y(x-2) = x-3 \Rightarrow y = \frac{x-3}{x-2}$$
$$f^{-1}(x) = \frac{x-3}{x-2} \Rightarrow f^{-1}(3) = \frac{3-3}{3-2} = 0$$

M1 For either attempting to solve  $\frac{2x-3}{x-1} = 3$  leading to a value of x or score for substituting in x = 3 in  $f^{-1}(x)$  where  $f^{-1}(x) = \frac{x-3}{x-2}$ A1  $f^{-1}(3) = 0$ 

b. Show that

$$\mathrm{ff}(x) = \frac{x+p}{x-2} \qquad x \in R, \ x \neq 2$$

www.pmt.education

where *p* is an integer to be found.

$$ff(x) = \frac{2\left(\frac{2x-3}{x-1}\right)-3}{\left(\frac{2x-3}{x-1}\right)-1} \Rightarrow ff(x) = \frac{\frac{4x-6}{x-1}-\frac{3x-3}{x-1}}{\frac{2x-3}{x-1}-\frac{x-1}{x-1}}$$
$$= \frac{4x-6-3x+3}{2x-3-x+1} = \frac{x-3}{x-2}$$

M1 For an attempt substituting  $\frac{2x-3}{x-1}$  in f(x).

dM1 Attempts to multiply all terms on the numerator and denominator by (x - 1) to obtain a fraction  $\frac{P(x)}{Q(x)}$  where P(x) and Q(x) are linear expressions.

DOG PMTEducation

A1 
$$\cos \frac{x-3}{x-2}$$
 with  $p = -3$ 

(3)

(2)



The function g is defined by

g:  $x \to x^2 - 5x$   $x \in R$ ,  $0 \le x \le 6$ 

c.Find the range of g.

 $\frac{dg}{dx} = 2x - 5$   $2x - 5 = 0 \Rightarrow x = \frac{5}{2}$  g(6) = 36 - 30 = 6 $-\frac{25}{4} \le g(x) \le 6$ 

c. M1 Either applies the completing the square method to establish the minimum of g. Or differentiating the quadratic, setting the result equal to zero, finding x and inserting this value of x back into g(x) in order to find the minimum.

B1 For either finding the correct minimum or maximum value of g

A1 
$$-\frac{25}{4} \le g(x) \le 6$$
 or  $-\frac{25}{4} \le g \le 6$  or  $-\frac{25}{4} \le y \le 6$  (3)

d. Explain why the function g does not have an inverse.

g(x) does not have an inverse as it is not one-to-one

B1 either the function g is many-one or the function g is not one-one

(1)

(Total for Question 5 is 9 marks)





6. a. Express  $4 \sin x - 5 \cos x$  in the form  $R \sin(x - \alpha)$ , where R > 0 and  $0 < \alpha < 90^{\circ}$ . Give the exact value of *R*, and give the value of  $\alpha$ , in degrees, to 2 decimal places.

 $R = \sqrt{4^2 + 5^2} = \sqrt{41} \quad \text{only}$  $\tan \alpha = \frac{5}{4} \Rightarrow \alpha = 51.34^{\circ}$ 

- B1  $R = \sqrt{4^2 + 5^2} = \sqrt{41}$  only
- M1 Proceeds to a value of  $\alpha$  from  $\tan \alpha = \pm \frac{5}{4}$ ,  $\tan \alpha = \pm \frac{4}{5}$ , or  $\cos \alpha = \pm \frac{4}{R}$
- A1  $\alpha = 51.34^{\circ}$  or 0.8961 radians

$$T = \frac{8400}{19 + (4\sin x - 5\cos x)^2} , \ x > 0$$

- b. Use your answer to part *a* to calculate
  - i. the minimum value of T,

$$T = \frac{8400}{19 + \left(\sqrt{41}\right)^2} = \frac{8400}{60} = 140$$

- M1 for an attempt at  $\frac{8400}{19+(R)^2}$
- A1 140
- ii. the smallest value of x, x > 0, at which this minimum value occurs.
- M1 Uses x their  $\alpha = (2n + 1)90^{\circ}$  to find x.

e.g.  $90^{\circ} \pm 51.34^{\circ}$ 

A1 141.34<sup>0</sup>

(4)

(3)

(Total for Question 6 is 7 marks)

🕟 www.pmt.education

💟 PMTEducation







Figure 1 shows a sketch of a curve *C* with equation y = f(x) and a straight line *l*. The curve *C* meets *l* at the points (2,4) and (6,0) as shown.

The shaded region R, shown shaded in Figure 1, is bounded by C, l and the y-axis.

Given that f(x) is a quadratic function in x, use inequalities to define region R.

Working out equation of line *l*:

Gradient is given by:  $\frac{4}{-4} = -1$ 

 $y - 4 = -1(x - 2) \Rightarrow y = -x + 6$ 

Given that C is a quadratic function it has equation  $y = ax^2 + bx$  (no c as the y intercept is 0)

Substituting in (2,4) and (6,0) gives:

$$4 = 4a + 2b, 0 = 36a + 6b$$

Solving simultaneously, this gives:

$$a=-\frac{1}{2}, b=3$$

DOG PMTEducation

Therefore  $C: y = -\frac{1}{2}x^2 + 3x$ 

The region R is defined by  $x \ge 0$ ,  $y \le -x + 6$ ,  $y \ge \frac{1}{2}x(6-x)$ 





- M1 Attempts to find the gradient of equation of line *l* with points (2,4) and (6,0) and substitutes either (2,4) or (6,0) into  $y - y_1 = m(x - x_1)$  to obtain an equation of line *l*
- $A1 \quad y = -x + 6$
- M1 A complete method to find the constant *a* in y = ax(6 x) or the constants *a*, *b* in  $y = ax^2 + bx$ ,  $a = -\frac{1}{2}$ , b = 3

A1 Equation of the curve C is  $y = \frac{1}{2}x(6-x)$  or  $y = -\frac{1}{2}x^2 + 3x$ 

B1 Fully defines the region R.

$$x \ge 0, y \le -x + 6, y \ge \frac{1}{2}x(6-x)$$

(5) (Total for Question 7 is 5 marks)

▶ Image: PMTEducation





### Figure 2

Figure 2 shows a sketch of the curve *C* with the equation y = f(x) where

$$f(x) = (2x^2 - 9x + 9)e^{-x}, x \in R$$

The curve has a minimum turning point at A and a maximum turning point at B as shown in the figure above.

a. Find the coordinates of the point where C crosses the y-axis.

www.pmt.education

$$f(0) = (2(0) - 9(0) + 9)e^{-0}$$
  
= 9

▶ Image: PMTEducation

Therefore the coordinates are (0,9)

(1)



b. Show that  $f'(x) = -(2x^2 - 13x + 18)e^{-x}$ 

The product rule states that:

$$\frac{d(uv)}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$$

And gives:

$$f'(x) = (4x - 9)e^{-x} - (2x^2 - 9x + 9)e^{-x}$$
$$= -(2x^2 - 13x + 18)e^{-x}$$

M1 Attempts the product rule or quotient and uses  $e^{-x} \rightarrow ke^{-x}$ ,  $k \neq 0$ 

A1 A correct f'(x) which may be unsimplified.

$$f'(x) = (4x - 9)e^{-x} - (2x^2 - 9x + 9)e^{-x} \text{ or } f'(x) = \frac{e^{x}(4x - 9) + (2x^2 - 9x + 9)e^{x}}{e^{2x}}$$

A1 Proceeds correctly to given answer showing all necessary steps.

$$f'(x) = -(2x^2 - 13x + 18)e^{-x}$$

c. Hence find the exact coordinates of the turning points of C.

Turning points of C are given by

$$f'(x) = 0 \Rightarrow -(2x^2 - 13x + 18)e^{-x} \Rightarrow 2x^2 - 13x + 18 = 0$$
$$x = \frac{9}{2}, x = 2$$

Therefore  $y = -e^{-2}$  or  $y = 9e^{-\frac{9}{2}}$ , and the stationary points are given by  $(2, -e^{-2})$  and  $\left(\frac{9}{2}, 9e^{-\frac{9}{2}}\right)$ .

B1 States the roots of f'(x) = 0 as  $2x^2 - 13x + 18 = 0 \implies x = 2, \frac{9}{2}$ 

M1 Substitutes either x = 2 or  $x = \frac{9}{2}$  into f(x) to find a y value.

A1 Obtains  $(2, -e^{-2})$  and  $(\frac{9}{2}, 9e^{-\frac{9}{2}})$  as the stationary points.

(3)

(3)





The graph with equation y = f(x) is transformed onto the graph with equation

y = af(x) + b,  $x \ge 0$ 

The range of the graph with equation y = af(x) + b is  $0 \le y \le 9e^2 + 1$ 

Given that *a* and *b* are constants.

d.find the value of *a* and the value of *b*.

The curve *C* is stretched vertically with scale factor *a*, and vertically translated up *b* units. The *y*-intercept of *C* is (9,0), which will be the maximum value for  $x \ge 0$ . Therefore 9 will become  $9e^2 + 1 \Rightarrow a = e^2$ , b = 1

- B1 Either  $a = e^2$  or b = 1
- **B1** Both  $a = e^2$  and b = 1

(Total for Question 8 is 9 marks)



(2)



**9.** a. Use the substitution  $t^2 = 2x - 5$  to show that

$$\int \frac{1}{x + 3\sqrt{2x - 5}} \, \mathrm{d}x = \int \frac{2t}{t^2 + 6t + 5} \, \mathrm{d}t$$

$$t^{2} = 2x - 5 \Rightarrow 2t \frac{dt}{dx} = 2 \Rightarrow tdt = dx$$
$$\int \frac{1}{\frac{t^{2}+5}{2}+3t} dx = \int \frac{1}{\frac{t^{2}+5}{2}+3t} tdt$$
$$= \int \frac{2t}{t^{2}+5+6t} dt$$

**B1** tdt = dx or equivalent

M1 Attempts a full substitution of  $t^2 = 2x - 5$  and  $x = \frac{t^2+5}{2}$ , including dx = t dt to form an integrand in terms of t

A1 Clear reasoning including one fully correct intermediate line, including the integral signs, leading to the given expression.

(3)

b. Hence find the exact value of

$$\int_{3}^{27} \frac{1}{x + 3\sqrt{2x - 5}} \, \mathrm{d}x$$

Using partial fractions:

$$\frac{2t}{t^2 + 6t + 5} = \frac{2t}{(t+5)(t+1)} = \frac{A}{t+5} + \frac{B}{t+1}$$
$$2t = A(t+1) + B(t+5)$$
$$t = -5 \Rightarrow -10 = -4A \Rightarrow A = \frac{5}{2}$$
$$t = -1 \Rightarrow -2 = 4B \Rightarrow B = -\frac{1}{2}$$
$$\int \frac{1}{x+3\sqrt{2x-5}} = \int \frac{5}{2(t+5)} - \frac{1}{2(t+1)}$$
$$= \frac{5\ln(x+5)}{2} - \frac{\ln(x+1)}{2} + c$$

▶ Image: Second Second

🕟 www.pmt.education





Finding the new limits:

 $x = 27 \Rightarrow t = 7, x = 3 \Rightarrow t = 1$  $\int_{3}^{27} \frac{1}{x + 3\sqrt{2x - 5}} dx = \left[\frac{5\ln(x + 5)}{2} - \frac{\ln(x + 1)}{2}\right]_{1}^{7}$  $= \left[\frac{5}{2}\ln(7 + 5) - \frac{1}{2}\ln(7 + 1)\right] - \left[\frac{5}{2}\ln(1 + 5) - \frac{1}{2}\ln(1 + 1)\right] = \frac{5}{2}\ln(2) + \frac{1}{2}\ln\left(\frac{1}{4}\right)$  $\ln\sqrt{8}$ 

PMTEducation

| ( | 5) |  |
|---|----|--|
| • |    |  |

- b. M1 Uses correct form of Partial Fraction leading to values of A and B A1 Correct Partial Fraction  $\frac{2t}{t^2+6t+5} = \frac{\frac{5}{2}}{t+5} + \frac{-\frac{1}{2}}{t+1}$ dM1 Integrates using lns. e.g.  $P \ln(t+5) + Q \ln(t+1) \Rightarrow \frac{5}{2} \ln(t+5) - \frac{1}{2} \ln(t+1)$ 
  - M1 Uses either the limits 7 and 1 with their attempted integral or alternatively substitutes  $t = (2x 5)^{\frac{1}{2}}$  and uses the limits 27 and 3 within their attempted integral. Applies the addition law or subtraction law leading to the form  $k \ln a$  or  $\ln b$  where a and b are constants.

A1 ln 
$$2^{\frac{3}{2}}$$
 or  $\ln \sqrt{8}$ 

(Total for Question 9 is 8 marks)

D





10.



#### Figure 3

Circle  $C_1$  has equation  $x^2 + y^2 = 64$  with centre  $O_1$ . Circle  $C_2$  has equation  $(x - 6)^2 + y^2 = 100$  with centre  $O_2$ . The circles meet at points *A* and *B* as shown in Figure 3.

a. Show that angle  $AO_2B = 1.85$  radians to 3 significant figures.

$$O_2 = (6.0)$$
  
 $AO_2 = BO_2 = 10$   
 $AB = 16$ , as it is the diameter of  $C_1$   
 $\frac{AO_2B}{2} = \sin^{-1}\frac{8}{10} = 0.927$   
 $AO_2B = 1.8545 \ rad$   
= 1.85 to 3 sig fig as required

B1  $C_1$  has centre (0,0), radius = 8 and  $C_2$  has centre (6,0), radius 10

M1 Uses the radii of the circles  $C_1$  and  $C_2$  and correct attempt to find angle  $AO_2B$  in circle  $C_2$ .

e.g. Attempts 
$$\sin AO_2O = \frac{8}{10}$$
 to find  $AO_2O$  then  $\times 2$   
Alternatively uses  $\cos AO_2O = \frac{6}{10}$  to find  $AO_2O$  then  $\times 2$   
Or uses  $\tan AO_2O = \frac{8}{6}$  to find  $AO_2O$  then  $\times 2$ 

OR uses cosine rule  $\cos AO_2B = \frac{10^2 + 10^2 - 16^2}{2 \times 10 \times 10} = -\frac{56}{200} \implies AO_2B = \cos^{-1}\left(-\frac{56}{200}\right) = \cdots$ 

PMTEducation

A1 Correct and careful work in proceeding to the given answer.

i.e. 1.85 radians

(3)







b. Find the area of the shaded region, giving your answer correct to 1 decimal place.



Area of sector  $AO_2B$  – area of triangle  $AO_2B$  =

$$= \frac{1}{2} \times 10^2 \times (1.85) - \frac{1}{2} \times 10^2 \times \sin 1.85$$
  
=44.436

Area of the region shaded grey = Area of semicircle with centre  $O_1$  – Area of segment

$$=\frac{\pi \times 8^2}{2} - 44.436$$
$$= 56.1$$

b. M1 Attempts to use the correct formula to find the area of the segment shaded black with centre *O*<sub>2</sub>.

M1 Attempts to use the correct method in order to find area of the region shaded grey.

PMTEducation

A1 56.1

(Total for Question 10 is 6 marks)



(3)



 In a science experiment, a radio active particle, N, decays over time, t, measured in minutes. The rate of decay of a particle is proportional to the number of particles remaining.

Write down a suitable equation for the rate of change of the number of particles, N in terms of t.

- M1 Any equation of the correct form, involving N and an exponential in t.
  - e.g.  $N = e^{\pm t}$ ,  $N = Ae^{\pm t}$ ,  $N = Ae^{\pm kt}$ 
    - Allow  $\ln N = kt + c$
- A1  $N = Ae^{-kt}$

(2) (Total for Question 11 is 2 marks)





12. a. Show that

$$\sec \theta - \cos \theta = \sin \theta \tan \theta$$
  $\theta \neq (\pi n)^0$   $n \in Z$ 

$$\frac{1}{\cos\theta} - \cos\theta = \frac{1 - \cos^2\theta}{\cos\theta} = \frac{\sin^2\theta}{\cos\theta} = \sin\theta\tan\theta$$

B1 States or uses  $\sec \theta = \frac{1}{\cos \theta}$ 

M1 Attempts to obtain a single fraction.

A1 Shows all the necessary steps leading to given answer.

(3)

(5)

b. Hence, or otherwise, solve for  $0 < x \le \pi$ 

 $\sec x - \cos x = \sin x \tan(3x - \frac{\pi}{9})$  $\sin x \tan x = \sin x \tan\left(3x - \frac{\pi}{9}\right)$  $\tan x = \tan\left(3x - \frac{\pi}{9}\right)$  $x = 3x - \frac{\pi}{9} \Rightarrow x = \frac{\pi}{18}$ 

Second solution can be found from  $x + \pi = 3x - \frac{\pi}{9} \Rightarrow x = \frac{5\pi}{9}$ Third solution can be found from  $\sin x = 0 \Rightarrow x = \pi$ 

b. M1 Uses part (a), cancels or factorises out the sin *x* term, to establish that one solution

DOG PMTEducation

is found when  $x = 3x - \frac{\pi}{9}$ .

A1 
$$x = \frac{\pi}{18}$$

M1 Second solution can be found by solving  $x + \pi = 3x - \frac{\pi}{9}$ .

Al 
$$x = \frac{5\pi}{9}$$

B1 Deduces that a solution can be found from  $\sin x = 0 \Rightarrow x = \pi$ 

(Total for Question 12 is 8 marks)





**13.** A sequence  $a_1, a_2a_3, \dots$  is defined by

$$a_{n+1} = 5 - pa_n \qquad n \ge 1$$

where  $p \in \mathbb{Z}$ .

Given that

- $a_1 = 4$
- the sequence is a periodic sequence of order 2.
- a. Write down an expression for  $a_2$  and  $a_3$ .

$$a_2 = 5 - p(a_1) = 5 - pa_1$$
  
 $a_3 = 5 - p(a_2) = 5 - p(5 - pa_1) = 5 - 5p + 4p^2$ 

- M1 Applies the sequence formula  $a_{n+1} = 5 pa_n$  to find  $a_2$  and  $a_3$ .
- A1 Both are correct  $a_2 = 5 4p$  and  $a_3 = 5 5p + 4p^2$

(2)

b. Find the value of *p*.

As the sequence is of order 2,  $a_1 = a_3$ , therefore  $4 = 5 - 5p + 4p^2 \Rightarrow p = 1, p = \frac{1}{4}$ , so we choose p = 1.

M1 Sets 
$$a_3 = 4$$
 and attempts to find the value of  $p$   
A1  $p = 1$ 
(2)  
c. Find  $\sum_{r=1}^{21} a_r$   
 $\sum_{r=1}^{21} a_r = a_1 + a_2 + a_3 + a_4 + \dots + a_{19} + a_{20} + a_{21}$   
 $= 4 + 1 + 4 + 1 + \dots + 4 + 1 + 4 = 10 \times (4 + 1) + 4$ 
(2)

M1 Uses a clear strategy to find the sum to 21 terms.

A1 54

(Total for Question 13 is 6 marks)





#### **14.** A circular stain is growing.

The rate of increase of its radius is inversely proportional to the square of the radius.

At time t seconds the circular stain has radius r cm and area A cm<sup>2</sup>.

a. Show that  $\frac{dA}{dt} = \frac{k}{\sqrt{A}}$ .

$$\frac{dr}{dt} \propto \frac{1}{r^2} \Rightarrow \frac{dr}{dt} = \frac{c}{r^2}$$
Using the chain rule,  $\frac{dA}{dt} = \frac{dA}{dr} \times \frac{dr}{dt}$ .  $A = \pi r^2 \Rightarrow \frac{dA}{dr} = 2\pi r$   
 $\frac{dA}{dt} = 2\pi r \times \frac{c}{r^2}$ 
Using  $r = \sqrt{\frac{A}{\pi}}$  gives:  
 $\frac{dA}{dt} = 2\pi \sqrt{\frac{A}{\pi}} \times \frac{c}{\frac{A}{\pi}}$   
 $= \frac{2\pi\sqrt{\pi}c}{\sqrt{A}} = \frac{k}{\sqrt{A}}$ 

B1 Uses the model to state  $\frac{dr}{dt} = \frac{c}{r^2}$ M1 Attempts to use  $\frac{dA}{dt} = \frac{dA}{dr} \times \frac{dr}{dt}$  with  $A = \pi r^2$  and  $\frac{dA}{dr} = 2\pi r$ M1 Substitutes  $r = \sqrt{\frac{A}{\pi}} = \frac{\sqrt{A}}{\sqrt{\pi}}$  into  $\frac{dA}{dt}$  and proceeds to an expression in terms of *r* for A1 Proceeds to the given answer with accurate work showing all necessary steps.

(4)





Given that

- the initial area of the circular stain is  $0.09 \text{ cm}^2$ .
- after 10 seconds the area of the circular stain is 0.36 cm<sup>2</sup>.
- b. Solve the differential equation to find a complete equation linking A and t.

We have  $\frac{dA}{dt} = \frac{k}{\sqrt{A}}$ . Separation of variables gives  $\int \sqrt{A} \, dA = \int k \, dt$ .

Completing the integration gives:

$$\frac{2}{3}A^{\frac{3}{2}} = kt + c.$$

From the question, at time t = 0, A = 0.09

$$\frac{2}{3}(0.09)^{\frac{3}{2}} = k(0) + c \Rightarrow \frac{9}{500}$$

At time t = 10, A = 0.36

$$\frac{2}{3}(0.36)^{\frac{3}{2}} = k(10) + \frac{9}{500} \Rightarrow 10k = \frac{18}{125} - \frac{9}{500} \Rightarrow k = \frac{63}{5000}$$

Therefore, an equation linking A and t is

$$A = \left(\frac{189t}{10000} + \frac{27}{1000}\right)^{\frac{2}{3}}.$$

| ( | 6 |   |
|---|---|---|
| J | υ | J |

- B1 Separates the variables  $\int \sqrt{A} \, dA = \int k \, dt$
- M1 Integrating the lhs and rhs.
- A1 Correct integration
- B1 Substitutes  $t = 0, A = 0.09 \Rightarrow c = \frac{9}{500}$  or equivalent
- M1 Substitutes t = 10, A = 0.36 to find k.
- A1 Obtains any correct equation for the model.

e.g. 
$$A = \left(\frac{189t}{10000} + \frac{27}{1000}\right)^{\frac{2}{3}}$$
 or equaivalent

(Total for Question 14 is 10 marks)





**15.** The curve *C* has equation

$$y = \frac{1}{2}x - \frac{1}{4}\sin 2x$$
  $0 < x < \pi$ 

a. Show that  $\frac{dy}{dx} = \sin^2 x$ 

 $\frac{d}{dx} \left( \frac{1}{2}x - \frac{1}{4}\sin 2x \right) = \frac{1}{2} - \frac{1}{2}\cos 2x$ Using the identity  $\cos 2x = 1 - 2\sin^2 x$ :  $\frac{dy}{dx} = \frac{1}{2} - \frac{1}{2}(1 - 2\sin^2 x) = \sin^2 x$ .

M1 Attempts to differentiate  $y = \frac{1}{2}x - \frac{1}{4}\sin 2x$  to give  $\frac{dy}{dx} = p - q\cos 2x$  where p and q are constants.

A1 Correct differentiation 
$$\frac{dy}{dx} = \frac{1}{2} - \frac{1}{2}\cos 2x$$

A1 Proceeds correctly to the given answer replacing  $\cos 2x = 1 - 2\sin^2 x$ 

(3)

(3)

b. Find the coordinates of the points of inflection of the curve.

Points of inflection are found when the second derivative equals zero:

 $\frac{d^2 y}{dx^2} = \frac{d}{dx}(\sin^2 x) = 2\cos x \sin x$   $2\sin x \cos x = 0 \Rightarrow \sin x = 0 \text{ or } \cos x = 0 \Rightarrow x = 2k\pi \text{ or } x = \frac{(2k+1)\pi}{2}, k \in \mathbb{Z}.$ For  $0 < x < \pi$ , this means  $x = \frac{\pi}{2}$ .
Points of inflection at  $\left(\frac{\pi}{2}, \frac{\pi}{4}\right)$ 

M1 Attempts to differentiate  $\frac{dy}{dx}$  and equate to zero and proceed to find x. A1  $x = \frac{\pi}{2}$ A1 Fully correct substitution of  $x = \frac{\pi}{2}$  in  $y = \frac{1}{2}x - \frac{1}{4}\sin 2x$ , point of inflection  $\left(\frac{\pi}{2}, \frac{\pi}{4}\right)$ 

DOG PMTEducation

#### (Total for Question 15 is 6 marks)

#### 🕟 www.pmt.education





16. Use algebra to prove that the product of any two consecutive odd numbers is an odd number.

We can write an odd number at 2k + 1, and the next consecutive one as 2k + 3:  $(2k + 1)(2k + 3) = 4k^2 + 8k + 3$  $4k^2 + 8k + 3 = 2(2k^2 + 4k + 1) + 1$  therefore is odd

- B1 Writes any two odd numbers in the form either 2k 1, 2k + 1 or 2k + 1, 2k + 3
- M1 Multiplying out the two brackets.
- A1 Correct expression for multiplying out the two consecutive odd numbers.
- A1 Correct conclusion drawn from fully correct working.

DOG PMTEducation



(4)